rhysy.net

Some code snippets and functioning programs, mostly in Python (except GLADOS which is IDL).


Basics (another, better resource is the Python cheat sheet)

ChDir.py : Change to directory where the script is :

BlankArray.py  Declare a blank array 

NLines.py Find the number of lines in a file  

AddTrimNaNs.py FInd and trim NaNs

FindNans.py Find indices of NaNs in a list and delete them

ListFiles.py List files with specified extension

ListRandom.py List of random numbers

ArrayFromFile.py : Read array or list from file. Alternative, possibly clearer version : ArrayFromFile_2.py

MathTime.py : Some basic maths functions and timing.

SplitString.py : Split a string by character.

FileOps.py : Write or append to a file.

ReadFile.py : Read parameters from a file, avoid reading in line breaks.

ParallelPythonMultiprocessing.py : simplest possible use of the multiprocessing module.

CopyAndRunFiles.py : copies files from a specified location to multiple subdirectories and runs them. Useful for batch processing.

LineTest.py : how to use linecache to quickly read a specific line from a file (reads in the whole file though, so uses a lot of memory).

 

 

Basics - Blender (2.49) specific (see also the Blender 2.49 Python API)

ChBlendDir.py : Change to .blend file directory. 

DelVerts.py : Delete verticies.

GUIExample.py : Basic GUI.

FileBrowser.py : GUI file broswer (note this is bugged - can't send name to rest of program properly).

MeshMaterials.py : Get mesh from specified object, give it materials.

GetMaterial.py : Get materials of an object.

MoveVerts.py : Move verticies.

PointInMesh.py : Check if a point is inside a mesh.

DrawModes.py : Set draw mode to solid or transparent.

ExtrudePoints.py : Extrude points.

SelectObjects.py : Select objects.

ImageTexture.py : Create a material with a texture.

BoundingBox.py : Get the scale-independent, bounding box size of an object.

AutoRender.py : schedule the time for when a render starts (only on Linux).

 

 

Blender 2.78 or simialr versions

CreateMatrixText.py : Create a grid of Matrix-style text values from an input file.

AnimateMatrixText.py : Animate a grid of Matrix-style text from a series of input files.

AnimateVisibility.py : Animate object visibility in the 3D view and/or render display based on current frame. Designed for use with the Matrix text scripts above but could very easily be adapted.

CreateMeshes.py : Create a heightield (i.e. landscape) mesh from an input text file. There's not really any point in this since Blender has in-built tools for displacement. I suppose it's useful if you want very detailed control over the scaling.

EditMeshesAnimated.py : Animates heightfield meshes using a series of input text files.

AnimateClipAlpha.py : The "clip alpha" value is one of the few parameters in Blender that can't be keyframed, so here's a way to work around that.

AnimateLines_simplelayers.py : Controls the layers an object is visible on.

X-ray.blend : Not a script but an example of an "X-ray" style material. Very old technique which is hard to find described properly elsewhere so I want to make sure it's still available.

ModifyModifiers.py : Script to set the start and end frame of a "build" modifer.

 

 

FITS processing

FitsBaseline.pyFitsBaseline_SN.py :Fits and subtracts nth-order polynomials  with sigma clipping on spectral axis of data cubes. The SN version divides the spectra by their rms, returning a signal-to-noise cube rather than flux. Also available in IDL versions : FitsBaseline.pro, FitsBaseline_SN.pro

FitsMaskedBaseline.py : Takes two cubes as input, one with sources/RFI masked, one with no masking. Does the polynomial fitting as above on the masked cube, then subtracts the result from the unmasked cube. This can give better results if a large portion of the spectral baseline contains signal.

FitMed.py : Measure the median of the spatial (x-axis) bandpass and subtracts it.

SimMinMed .py: Chops the spectral bandpass up into boxes and measure the median in each box. Finds the minimum of the medians and subtracts it from the whole scan.

SimMedMed.py : As above, but usies the median of the medians instead of the minimum of the medians.

UserMed.py : Takes two cubes as input, one with sources masked, one without. Measures the median of the spatial bandpass in the masked cube, then subtracts this from the unmasked cube. Since the user has direct control over what to mask, this can use the maximum possible amount of the bandpass, so may be more accurate than MinMed or MedMed.

 

Fits2Text.py : Converts a FITS file into ASCII.

FITS2TextCubeSlicer.py :Converts a FITS cube into a series of ASCII files, one per channel.

Text2Fits.py : Converts ASCII to FITS. Not very robust though.

FluxInject.py : Adds flux into a data cube at the specified location.

GaussFluxInject.py : Adds flux with a 2D Gaussian profile.

Interpolate.py : Interpolates extra channels.

LatLong-XYZ.py : Converts cubes of latitude-longitude format into XY format.

DeGuass.py : Removes a Gaussian function. User can specify input parameters or allow them to vary (chi-squared minimization), e.g. center coordinates, FWHM, peak value. Works on multiple channels in 3D data cubes.

DeGuass_2D,py : Ony works on 2D data but can also (unlike DeGauss.py) iteratively fit ellipticity and position angle.

DeGauss3.py : removes Gaussians from a data cube without doing any fitting, just using the user-specified parameters exactly.

BlankFits.py : Creates a blank FITS file with the same header information as another.

AddHeader.py : Add FITS header keyword. Can also be used to edit existing keywords.

Clip.py : set all values above a specified threshold to zero (use this for setting values in an array in general).

ChannelClip.py : set all values in all channels outside a specified range to zero.

FitsEdit.py : basic image editing (e.g. changing image values of specific pixels)

FitsMultiply.py : takes two FITS files and multiplies them together.

LogFits.py : converts flux image values to logarithmic units.

FixAxes.py : takes data with 4 axes and converts it to 3, which is much easier to process.

MeasureRMSImage.py : measure the rms of an image using the spatial bandpass. Useful comparing the effects of processing when the spectral rms is unaltered.

PNG2FITS.py : takes a sequence of (greyscale ?) PNG images and converts them to a single FITS cube.

ReplaceNan.py : replaces all NaN's in an image with zero. Very inefficient though ! 

CheckHeaderKeyword.py : check if a keyword is present in the header.

FitsExtractVolume.py : masks arbitrary-shaped regions in a FITS file by reading in coordinate data from a file. Designed to be used in conjunction with FRELLED.

GfGridder.py, GfMultiGridder.py : grids numerical SPH (or n-body) particle data into PV FITS cubes. MultiGridder is for batch processing and works on files in multiple subdirectories.

 

 

Other

FRELLED : 3D FITS viewer. Does ALL of the things !

GLADOS : Source-finding program for HI data cubes. Takes three cubes as input : two orthogonal polarisations plus the average. Searches the average cube for sources spanning a specified number of channels, then checks for corresponding detections in each polarisation. Afterwards, matches sources in close proximity using starlink routines.

AGES cataloguing : Takes separate files containing inputs for mbspect and runs mbspect using each of them. Saves a file containing the input parameters and mbspect measurements, the ASCII log file of the specta, and postscripts.

Photometry : Programs to assist in bulk downloading and naming of SDSS FITS files, as well as automatically generating ds9 regions for aperture photometery. 

Wedge plotting : Reads in a file of RA, Dec, velocity and makes a wedge plot (aka pie slice). You'll have to make your own axes or modify the ones provided.

BatchImageConvert.py : resize/reformat multiple images using parallel processing. Useful for storing smaller copies of your photogrpahs (files may be overwritten !).

DropTime.py : super simple numerical calculation of freefall time under gravity varying with distance. Unnecessary, can be done analytically, but never mind.

GetSDSSRGBs.py : download multiple SDSS RGB images from a table of RA/Dec coordinates.

GForce.py : simple gravity simulator for Blender (non-Blender version here).

RadialProfile.py : measures the radial profile of a source in a FITS file.

IntegrateRings.py, IsoDisc py : set up discs of particles with density variations given by a user-input radial profile (can combine with RadialProfile.py). Useful when setting up simulated galaxies with radial density profiles taken from observations.

ParticleViewer_lite.blend : SPH/n-body particle viewer, adapted from the version in FRELLED to use linecache. This can be a lot faster than the standard version and makes for very small .blend files, but linecache needs a lot of memory.

rhysy.net | feedback@rhysy.net